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4.13.1 | Definition of Cyclic Code

A linear code is called cyclic code if every cyclic shift of the code vector produces some
other code vector. This definition includes two fundamental properties of cyclic codes,
They are discussed next.

4.13.2 | Properties of Cyclic Codes
As defined above, cydlic codes exhibit two fundamental properties :

1. Linearity and 2. Cyclic property.

4.13.2.1 | Linearity Property

This property states that sum of any two codewords is also a valid codeword. For example
let X; and X, are two codewords. Then,

X, = X;9X,

Here X, is also a valid codeword. This property shows that cyclic code is also a linear
code.

4.13.2.2 Cyc'lic Property

Every cyclic shift of the valid code vector produces another valid code vector. Because of
this property, the name 'cyclic' is given. Consider an n-bit code vector as shown below :

n_l,xn_zl, ....... ,xl,xO} ) e (4131)

Here x,_1,X,_5,...,X,X, etc. represent individual bits of the code vector "X". Let us shift
the above code vector cyclically to left side. ie, '

One cyclic shift of X gives, X" =(xn_2,xn_3,....,x'1,x0,xn_l) ‘ coa L e (4.13.2)

Here observe that every bit is shifted to left by one position. Previously x, _; was MSB but
after left cyclic shift it is at LSB position. Here the new code vector is X’ and it is valid
code vector. One more cyclic shift yields another code vector X”. i.e.,

N ='(xn_S’xn_4,...--/x-l,xO,xn_l,xn_z) - s (4.13.3)

Here observe that x,,_5; is now at MSB position and x,,_, is at LSB position..

4.13.3 | Algebraic Structures of Cyclic Codes

- The codewords can be represented by a polynomial.
For example, consider the n-bit codeword,

X = (2 5%y gsesic X1,% )

This codeword can be represented by a polynomial of degree less than or equal to (n-1).

-~



e N e - 100 SQOUICC allll DLIUL LUMLULLOUKUS

e X(p) = x4y p-1 T P2 bt xy pxg - @134)
Here X(p) is the polynomial of degree (n-1).
pis the arbitrary variabje of the polynomial.

The power of 'P' represent the positions of the codeword bits. i.e,
P -1 represents MSB.

p,0 represents LSB.

pl represents second bit from LSB side.”

Why to represent codewords by a polynomial ?

Polynomial representation is used due to following reasons :

i) These are algebraic codes. Hence algebraic operations such as addition, multlphcatlon,
division, subtraction etc. becomes very simple.

ii) Positions of the bits are represented with the help of powers of p in a polynomiai.

413.3.1 | Generation of Code Vectors in Nonsystematlc Form

Let M={m,_ 1: My pee My, Mg }be k' Dbits of message vector. Then it can be represented by
the polynomial as,

M(p) = myq PN mp pE2 4ty prmg . (135)
et X(p) represent the codeword polynomial. Tt is given as, 4

X(p) = M(p G(p) | e . (4.13.6)

Here G(p) is the generating polynomial of degree 'g'. For an (n, k) cyclic code, g=n- —k .
represent the number of panty bits. The generatmg polynomial is given as,

G(p) = i +84-1 P17+t gy ptl | .. (4137
Here g, _1,8,-2 81 &x® the parity bits. '

If M;,M,,M; ... etc are the other message vectors, then the corresponding code vectors
can be calculated as,

X1 (p) = My (p) G(p)
X, (p) = My (p) G(p)
X5 (p) = Ms (P)G(p) and so on | .. (413.8)

All the above code vectors Xi,XZ,X3 ... are in nonsystematic form and they satisfy cyclic
property. Note the generator polynomial G(p) remains the same for all code vectors.
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Ex. 4.13.1 The generator polynomial of a (7, 4) cyclic code is G(p)=p° +p+1
Find all the code vectors for the code in nonsystematic form.

Sol. : Here n=7and k =4 therefore g=n—-k =3,

There will be total 2% =24 =16 message vectors of 7 bits each. Consider any message

vector as, - -
M = (s my my mp)=(0 101
Then the message polynomial will be (k =4 in equation 4.13.5),

. Mp) = my p® +my pF+mprmy |
(1)

Mp) = p? +1
And given generator ~polynomial is,
Gp) = p> +p+1 . 2)

To obtain nonsystematic code vectors.
The nbnsystematic cyclic code is given by equation (4.13.6) as,
xX(p) = Mp) &p)=(p? +1) (P +p+1)

PP R apd eprl=ptapd 1?4 pel

p® +@ 1)y +p* +p+1

il

= P pPap+l (Since (18 1) p® =0p° =0)

= 0pb + p° +0p* +0p® + p* +p+1
Note that the degree of above polynomial is n—1=6. The code vector corresponding to
above polyn0m1a1 is, .

= (x X5 X4 ¥3 X3 X3 xo) (0100111)

This is the code vector for message vector 0101. This code vector is non systematic CYChC
code vector. Similarly other code vectors can be obtained using the same procedure. Table

4.13.1 lists the code vectors in nonsystematic form.

- Message bits ~ Nonsystematic Chdevectors: 1

No M=m, m, m, m, X = xe X5 Xy X Xy xll, Xy

L e e



0 0 0 1 0 1 1
0 0o 1 0 1 1 .0
0 0 1 1 1 0 1
0 1 0 1 1 0 O
g1 0. 0 1 .1 1
6 11 1 0 1 O
0 1 1 0 0 0 1
1-.0-1.1. 0.0 -0
0 1.0 .0 4 1
, 0 To g 111 %
e RSN TR RO A e
o e 0
il b b e
Losali 0 007 A

)

To check whether cyclic Property is satisfied :

Let us consider code vector Xg which is given in

above table as,

= (1011000)

Let us shift thls code vector cyclically to left side by 1 bit position. Then we get,
X' =0110001

From table, 6bserve that
X' = Xg (0110001)

Thus cyclic shift of Xy produces Xg. This can be varified for other code vectors also.

413.3.2 | Generation of Code Vectors in Systematic Form

Now let us study systemaﬁc cyclic codes. The systematic form of the block code is

X = (k message bits : (n—k) check bits) . (413.9)
= (mk—l Mg <oy Mg 2Cp_q Cqéz +ees €y CO) .. (4.13.10)
Here the check bits form a polynomial as,
C(P) = cq1 P e P2 4cy pieg . (413.11)
The check bit polynomial is obtained by,
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- "'413.3.2 | Generation of Code Vectors in Systematic Form

? Now let us study systemaﬁc cyclic codes. The systematic form of the block code is,
, ‘ | '

... (4.13.9)

X = (k message bits : (n—k) check bits)

= (M Mo e Mg g 1 G €1 €0 ) ... (4.13.10)
Here the check bits form a polynomial as,

C(p) = cpr P g PR e |
q-2 € PEC , .
The check bit polynomial is obtained by, ’ o ' (4 1S )



rn" A ﬂ)
C(2) = remi = L

L,(,\

- -

Above equation means -
D Multiply message polynomial by 7.
- 1) Divide p% M(p) by generator pobnomial.

i) Renmmder ot the division is C(z)

E\ -LB”' Me senerator polynomial of @ (7
code vevtors R thecode i systematic form.

Sol. : Here n=7and k =4 therefore g=n—-k=3

There will be total 2% =2* =16 message vectors of 7 bits each Comsider aav messare

vector as,

= (my my m my) =010

.4 oyl

code & Qri=g +r+-1 Fond il

~

Then the message polynomial will be (k=4 in equation 4.13.3),

Mp) =

AKp)
And given generator polynomual is,

my g e g+ my
= p2+1

GQp) = p> +p+1
To obtain p9 M (p) :

Since ¢ =3, pY M(p) will be,

p¥ Mp) = p* Mp)= pP(p* +1)
- S ag’
= p° +0p* + p® +0p? +0p+0
And Qp) = p’ +p+1=p +0p +p+1
pIM(p)
To pen‘orrn the division ————— -
G(p)

D

—

(For message vevtor of UICH

We now have p? M(p) and Gp) Now let's perform the division to find remainder of this

division.




Aﬂalos AN LA g O s T
el AL

2
p- +0+0 « Quotient

3 2
p+0p +P+1) pd +0p* + p® +0p? +0p+0

Mod-2 ’ p5 +Op4 4 PB - pz

addition <@ ® ® @

0 +0 +0 +p>+0p+0
\__‘w———J

Remainder

Thus the remainder polynomial is p? +0p+0 in the division of p> M(p) by G(p). Therefore

ation '(4.13.12) can be written as,

p® M(p)

vequ
C(p) = rem [————} = p2 +0p+0

G(p)

with g=3 the polynomial C(p) from equation (4.13.11) is,‘

p) = P +apP+
Thus cpt e Pty = p? +0p+0
Therefore the check bits are o
C = (cpc160)=(10 0)

The code vector is written in system form as given by equation (4.‘13.10) ie.,

X = (mk_lmk-__z ...mlmo :qu_leq_z ...Clco)
X = (ngmzmlnm:czclco)#(o101:100)

In this example
m. The other code vectors can be

This is the required cyclic code vectors in systematic for

obtained using the same pro
Table 4.13.2 lists all the systematic ¢

cedure.
yclic codes.

=

-
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1 0 0 0 . o o0 o0 1 0 1
1 0 0 1 1 0o o 1 1 1 0
1 0 1 0 1 0o 1 0 0 1 1
1 0 11 O e
1 1 0 0 7 1 0 0 0 1 0
11 0 1 1 1 0 1 0 0 1
11 1 0 1t 1 1 0 1 0 0
11 1 1 11T 1.é

Tablé 4.13.2 Code vectors of a (7, 4) cyclic code for G(p) = pj +p+1
We have obtained nonsystematic code vectors for the same generating polynomial in
Example 4.13.1. They are listed in Table 4.13.1.

4.13.4 | Encoding using an (n - k) Bit Shift Register

In this section we will discuss the encoders for systematic cyciic codes. Fig. 4.13.2 shows
the block diagram of a generalized (1, k) cyclic code. The symbols used to draw’encoders

are shown in Fig. 4.13.1.

Operation : The feedback switch is first closed. The output switch is connected to message
input. All the shift registers are initialized to all zero state./"['he k message bits are shifted

. r . i .
! y These are flip-flops. They are connected in sequential order to make a

shift register. The contents of the shift register are shifted from input to
output when clock pulse is applied.

_..fz

They represent closed path if g = 1 and open path (no connection) if g = 0.

——=()—= These symbols represent mod-2 addition

Fig. 4.13.1 Various symbols used in encoder

to the transmitter as well as shifted into the registers.

After the shift of 'k' message bits the registers contain 'q check bits. The feedback switch is
now opened and output switch is connected to check bits position. With the every shift,
the check bits are then shifted to the transmitter.



22— , 4-111

Source and Error Conurol L4770
o =

ore we observe that the block diagram performs the division operation and generates the

;emai“der (ie. check bits). This remainder is stored in the shift register after all message
pits are shifted out.

0 F
Feedback
switch

bits  Output

switch
O To transmitter

Message bits Message
input bits

Fig. 4.13.2 Encoder for systematic (n, k) cyclic code
; - =3 d veri
Ex. 4.13.3 Design the encoder for the (7, 4) cyclic code generated by G(p=p° + p+1 n 8
3 - ar
its operation for the received vector 1100. AU : Dec.-15,

Sol. : The generator polynomial is,

G(p) = p* +0p* +p+1
and Gp) = PP +g PP +gp+1-
On comparison of the two equation we obtain,
gy =1 and g =0
and . qg=n-k=7-4=3

With these values the block diagram of Fig. 4.13.2 will be as shown in Fig. 4.13.3 below.

——o/ o— o
Feedback ; l
switch

9o = 0
no connection

Check

bits  Qutput
— 0y switch

4"0')'—.' To transmitter
m

Message Message
bits bits

Fig. 4.13.3 Encoder for (7, 4) cyclic code for G (p)=p3 + p + 1
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i d cy. Since
: _ i . - i to hold check bits ¢; ¢; and ¢
Since g=3, there are ‘3’ flip-flops in shift register 10 onnected. Now let's verify the

82 =0, its link is not connected. g =1, hence its link is ¢ —(1100). Table 4.13.3 shows
operation of this encoder for message vector M=(rm3 1 1 ”10)4_13 3 on next page.)
the contents of shift registers before and after shifts. (See Table 4.15.

Register bit inputs before shift Register bit outputs after shift
r,=ry | ry=ry | rgErp 2 ry s e ro=r®&m
0 0 0 0 0
0®0®1=1 0@1=1
or 0 0 0 1
i I ke 1©0@1=0 0®1=1
F——7" =
1 0 1'/ 0 1©1®0=0 1@0=1
0 0 1 0 190 0=1 0©0=0

e

2 7 Feedback ¢
clock Message bitm — switch position

w2 on / off e

1 0 1 -1 on ~message " 1

1 1 R on  message 1~
. o g e .

0 0 0 1 on .. message 0

0 0 1 0 on ’ messagé | o

- 0 T 0 off check bits 0(ry)

- 1 0 0 off check bits . - 1(rh)
r12'_:r'1 ﬁ#b ﬁ2=0

- 0 0 0 off . checkbits 0 ()

Table 4.13.4 Operation of (7, 4) cyclic code encoder



ne Table 4.13.3 shows that at the end o

' _0,r-=1and r(; f last message bit the register bit outputs are

=0. The . '
.ts position. The check b_thEdback switch is opened and output switch is closed to check
)1 , ' Its are then shifted to the transmitter. The check bits are shifted

s ¢ =201 =7 ad ¢y =1 The Table 4134 i
i " 134 ill ' i i e and
heck bits. We know that the code vector is illustrates the shift operation of messag

X =
it (g 1y my my ¢ ¢; c)=(1100010)
The Table 4.13.4 lllgstrates how the bits are transmitted when input message is (1100)-

4.13.5 | Syndromé Decoding for Cyclic Codes

In cyclic codes also during transmission some errors may occur. Syndrome decoding can
pe used to correct those errors. Let's represent the received code, vector by Y. If 'E
represents an error vector then the correct code vector can be obtained as,

X = Y®E (from equation 4.12.20) ' ... (413.13)
or we can write the above equation as,

Y = X®E - _ ... (4.13.14)
We can write the above equation since it is mod-2 addition.

In the polynomial form we can write the above equation as,

Y(p) = X(p)+ E(p) ' ... (413.15)
Since X(p) = M(p)Glp) the above equétion will be,
Y(p) = M(p)G(p)+ Ep) . | ... (4.13.16)
Let the received polynomial Y(p) be divided by G(p) i.e.
Y (p) ; Remainder _ _
—+— = Quotient + —Fr 3 .. (41317
cip - 2t e *1317)
In the abovve equation if Yip= X(p) i.e: if it does not contain any error then,
X(p) _ et Remainder
E(-ﬁi = Quotien —f————G(p)

Since X(p)=M(p) G(p) Quotient will be equal to M(p) and remainder will be zero. This
shows thét if there is no error, then remainder will be zero. Here G(p) is factor of code
vector polynomial. Let’s represent Quotient by Q(p) and Remainder by R(p) then equation

(4.13.17) becomes, .

Y(P) _ Ay XD
- QP+ 50y | .. (413.18)



4.13.4 | Encoding using an (n - k) Bit Shift Register |
In this section we will discuss the encoders for systematic cyclic codes. Fig. 4.13.2 shows
the block diagram of a generalized (n, k) cyclic code. The symbols used to draw encoders

are shown in Fig. 4.13.1.

Operation : The feedback switch is first closed. The output switch is connected to message
input. All the shift registers are initialized to all zero state. The k 'message bits are shifted

| These are flip-flops. They are connected in sequential order to make 3
shift register. The contents of the shift register are shifted from input to
output when clock pulse is applied. ‘ :

, @ They represent closed path if g = 1 and opén path (no connection) if g = 0.

—=(@—— These symbols represent mod-2 addition

Fig. 4.13.1 Various symbols used in encoder

to the transmitter as well as shifted into the registers.

After the shift of 'k' message bits the registers contain 'g' check bits. The feedback switch is
10w opened and output switch is connected to check bits position. With the every shift,
he check bits are then shifted to the transmitter. - |




gore WE observe that the block diagram
maiﬂder (i.e. check bits). This remaind
:ﬁ Jre shifted out.

Feedback
sSwitch

performs the division operation and generates the
er 1s stored in the shift register after all message

bits  Output
= switch
- To transmitter
Mes§age bits Message
input bits ‘

Fig. 4.13.2 Encoder for systematic (n, k) cyclic code

Ex. 4.13.3 Design the encoder for the (7, 4) cyclic code generated by G(p)=p3 + p+1 and verify
its operation for the received vector 1100. -

Sol. : The generator polynomial is,
G(p) = p> +0p* +p+1
and G(p) = P° +8 p* +81 p+1-
On comparison of the two equation we obtain,
g4 =1 and g, =0

and g = n-k=7-4=3

With these values the block diagram of Fig. 4.13.2 will. be as shown in Fig. 4.13.3 below.

o
Feedback i
switch
(] =_0
no connection

gq=1

Check
bits  Qutput
: . Switch
. e q‘,o——qu transmitter
Message Message

bits bits | '
: Fig. 4.13.3 Encoder for (7, 4) cyclic code for G P)=p*+p+1

A o U e,
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Since q=3, there are ‘3’ flip-flops in shift register to hold check bits ¢; ¢ and fo: Since
g, =0, its link is not connected. g; =1 hence its link 1S connected. Now let’s verify the
operation of this encoder for message vector M=(mz my 1 mg) =(1100). Table 4.13.3 shows
the contents of shift registers before and after hifts. (Gee Table 4.13.3 on next page.)

-
T
¥ I BT

" Register bit outputs after shift

Register bit inputs before shift
_,_,____-—f_._,T”,WM.,_,_ -
rp=ry | rg=ri | =0 ry=ry | ry=rp®R®m ry=r,®m
A N S ‘.
0 0 0 0 0 0
———-——‘___H__—A———"‘_’“’ﬂ—f“-‘"—-i—““—w
0 0®0®1=1 Sl
0 0 0 | 1
7 _— _
0’ 1 A 190®1= D=1
VF 4 e —— , j
1 0 1 0 | 1@180°0 =
E 0 1 0 | 1©080=1 0®0=0
- ; :

Table 4.13.3 Shift register bit; positions for input message M = (1100)

coitrasrmet

SiocK bit SO T Feed?:tf “ Outputsmfch Transmit‘t.éd‘/
clock Message bitm ' v . swi , i :
9 5 r o onioff position bits
1 0 1 1 on message 1
1 . 1 0 1 on  message 1
¥ .

0 0 0 1 on message 0

0 0 1 0 on message 0

- off check bits 0(ry)

= off check bits 1(r)

- off check bits 0 (ry).

Table 4.13.4 Operation of (7, 4) cyclic code encoder



Jble 4133 shows that at the end of last message bit the register bit outputs are
€ s -1and 1 =0. The feedback switch is opened and output switch is closed to check

" Iosiﬁon' The check bits are then shifted to the transmitter. The check bits are shifted

’

pit ;ré,cl =1, and ¢y =r(',. The Table 4.13.4 illustrates the shift operation of message and
¥ :é( pits. We know that the code vector is,
& A A
X = (my my my my Cy g ¢p)=(1100010)
e Table 4.13.4 illustrates how the bits are transmitted when input message is  (1100).

syndromé Decoding for Cyclic Codes

| o cyclic codes also during transmission some errors may OCCur. Syndrome decoding can
. used to correct those errors. Let's represent the received code, vector by Y. If'E
represents an error vector then the correct code vector can be obtained as,

X = YO E (from equation 4.12.20) - .. (413.13)
or we can write the above equation as, -
Y = X®E - | . (413.14)
We can write the above equation since it is .mod-z. addition.
In the polynomial form we can write the above equation as, |
Y(p) = X(p)+ E(p) e | .. (41315)
Since X(p) = M(p)Gp) the above equ;ationv will be,

Y(p) = M(p) G(p)+ E(p) . | | ... (4.13.16)
Let the received polynomial Y(p) be divided by G(p) ie.

Y (p) ) Remainder
YAP) _ Quotient + —=—~——
cp) - Rrotentt TG 0)

In the above equation if Y(p) = X(p) i.e: if it does not contain any error then,

... (4.13.17)

% = Quotient + ___René/z;;der

Since X(p)= M(p) G(p) Quotient will be equal to M(p) and remainder will be zero. This
shows that if there is no error, then remainder will be zero. Here G(p) is factor of code

vector polynomial, Let's represent Quotient by Q(p) and Remainder by R (p) then equation
(413.17) becomes, . |

Y(p) _ R(p)
cp - R 5 | | .. (413.18)
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il . N
Clearly R(p) will be the polynomial of degree less than or equal to g~1 Multiply both
sides of above equation by G(p)i.e. s
Y (p) = Q(p) G(p)+ R(p) o - (413.19)
On comparing equation 4.13.18 and above equation 413.19 we obtain,

M(p)G(p)® E(p) = E(p)G(n)©® R(p)
| E(p) = M(p)G(p)® QPGP @ R(p)
The above equation has all mod-2 additions. Therefore subtraction and addition is same,

E(p) = [M(p)+Q(p] G(p)+ R(p) | . (413.20)

This equation shows that for a fixed message vector and generator polynomial, an error
pattern or error vector ' E depends on remainder R. For every remainder 'R’ there will be
specific error vector. Therefore we can call the remainder vector 'R' as syndrome vector ' S,

or R(p)=S(p) Therefore equation (4. 13.18) will be,

Y (p) S(p)

cm - PG - (41321)

Thus the syndrome vector is obtained by dividing received vector Y (p) by G(p), i.e.

- (p)
S(p) = rem [G( )] | ... (41321(a))

4.13.51 | Block Diagram of Syndrome Calculator

Fig. 4.13.4 shows the generalized block diagram of a syndrome calculator.

In Fig. 4.13.4 observe that there are 'q stage shift register to generate 'q bit syndrome
vector.

94
o
o
- Received A
code vector |
Y S0 84 I S —
2 Qutput
syndrome

Fig. 4.13.4 Computation of syndrome for an (n, k) cyclic code




! 1he Opel'

e R R G e e e R S B s A RS A S s
4/
ations as follows -

sally all the sh'%ft register contents are zero and the switch is closed in position 1. The
In ved vector Y is shifted bit by bit into the shift register. The contents of flip flops keep
) changing acc?rding to input bits of Y and values of g;, ¢, etc. After all the bits of Y are
ied, the g flip-flops of shift register contains the g - bit syndrome vector. The switch is

o closed fo position 2 and clocks are applied to the shift register. The output is a
S)mdrome vector S =(Sq_1, Sq_z, oD S] 50)

o, 4134 Design a syndrome calculator for a (7, 4) cyclic Hamming code generated by the
polyﬂﬂmial G(p)=p° + p+1 Calculate the syndrome for Y=(1001101)

AU : Dec.-15, Marks 8
gol. : For the given code n=7k =4,q=r.1—k=7—4=3
The given generator polynomial is, ‘
G(p) = PP +0p7 +p+l
ad . G(p) = P +g, p? +g, pt+1 generalized equation.
On comparison of the above two equations we obtain,

With these values the block diagram of a syndrome calculator for (7, 4) cyclic code will be
as shown in Fig. 4.13.5. . . : |

g4=1 92= 0
no connection

_ Sp | S, —» S, I S S
Input vector : ‘Syndrome
Y : output

Fig. 4.13.5 Block diagram of a syndrome calculétor for (7,‘ 4) cyclic code with
Gp)=p*+p+1 T

Operation and explanation

The switch is kept in position 1 until all the ‘7" bits of received vector Y are shifted into
the shift register. The flip-flops of the shift register contain syndrome vector when all bits
£'Y' are shifted. The switch is then closed to position 2 and clock pulses are applied to
shift register. This gives syndrome vector at the output. The following table illustrates the
operation of this syndrome calculator for received vector Y = (1 0 0 1 1 0 1). The table
shows the contents of flip-flops with every shift.



jon Theory and Coding
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]

Review Que codes 7 |
What‘:re ::;:::'codes ? Why they are called’ sub class of :Io;:lynomial& ;
Explain hO‘;l' cyclic codes are generated from the gen b 'fxed for cyclic codes. . |
Explain how éenerator and parity check matrices are' obtat ving PrOpeT block diagrams. ]
Explain the encoding and decoding methods for cyclic codej g'latar for cyclic codes.
Giving block diagram explain the operation of syndrome ¢ £
Explain what are BCH codes. ‘
lain the followin '
f):rgolay mdf: ii) Sghortened codes iii) Burst error correcting codes |
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4.12 | Convolutional Codes

4.12.1 | Definition of Convolutional Coding

A convolutional coding is done by combining the fixed number of.mput !Dlts. Th:l llnpu;
bits are stored in the fixed length shift register and they are combined with t-he. elp o
mod-2 adders. This operation is equivalent to binary convolution and hence it is ca-lled
convolutional coding. This concept is illustrated with the help of simple example given
below.

Fig. 4.12.1 shows a convolutional encoder.

it represent Prwloustwosueooalvonmm
aLh:mb:,m”M bits are stored in those two flip-flops.
This bit is the part ( Those two bits (m,,m,) represent
of shift register mtoofshiﬂrogister
bits input mim|m

Fig. 4.12.1 Convolutional encoder with

k'a,k.‘.ndn-z
The above convolutional encoder operates as follows,

Operation :

Whenever the message bit is shifted to position ‘m’, the new val
generated depending upon m, m and m,. m and m, store Ues of x; and x, are

bits. The current bit is present in m. Thus we can write, € Previoys two- message
X, = m®m &m, 2
' ... (4.12.
and X, = mdm
... (4122)

TECHNICAL PUBLICATINME™  ._ T —
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‘ﬂ!e output switch first samples x

and then - . -
.y to my and contents of m to ! X,- The shift register then shifts contents of

™. Next input bit is then taken and stored in m Again
. 4121 and equation 4.122). The ou

X = XXX XXXy .... and so on ... (412.3)

PR,

- Here note that for every input message bit two encoded output bits x,

transmitted. In other words, for a sin

=

and x, are
gle message bit, the encoded code word is two bits

8
R
;

! ie. for this convolutional encoder,
it

%Number of message bits, k = 1

;& Number of encoded output bits for one message bit, n = 2
’{(4 41211 | Code Rate of Convolutional Encoder

e code rate of this encoder is,

Lo k_1 "
73 ... (412.9)

b the encoder of Fig. 4.12.1, observe that whenever a particular message bit enters a shift
register, it remains in the shift register for three shifts i.e.,

First shift —Message bit is entered in position ‘m’.

S g a s VA e i o g s
= s g . \:

g Second shift —Message bit is shifted in position m,.
l i, Third shift —Message bit is shifted in position m,.

o d at the fourth shift the message bit is discarded or simply lost by overwriting. We
now that x; and x, are combinations of m, m, m,. Since a single message bit remains in
"m during first shift, in m; during second shift and in m, during third shift; it influences
-‘;ouiput x; and x, for ‘three’ successive shifts.

£
r"’ :

B! For the encoder of Fig. 4.12.1 constraint length K = 3 bits. This is because in this encoder, a
angle message bit influences encoder output for three successive shifts. At the fourth- shift,

: . the message bit is lost and it has no effect on the output.

: mmm'— An up thrust for imowledge
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(41213 | Dimension of the Code

The dimension of the code is giver! by n and k. We
bits taken at a time by the encoder And 'n' is the encoded ou
bits Hence the dimension of the code is (n k). And such
convolutional encoder For example, the encoder of Fig. 4.12.1 has

know that k' is the number of message
tput bits for one message
encod;ef]' is Calk(l (", k)
the dimension of (2, 1).

4122 mmwmwdmmdsm

Let the sequence ls‘o"' S‘;“» X‘;" g‘..“l denote the impulse response of the adder which

..... ) () (2)
generates 1, in Fig 4121 Sumilarly, Let the sequence (géz),g(‘ )'32 ...... Sm } denote the

impulse response of the adder which generates x, in Fig. 4.12.1. These impulse responses
are also called gemerator sequences of the code.

Let the incoming message sequence be fmy, my, my ... ] The encoder generates the two
output sequences x, and 1, These are obtained by convolving the generator sequences
with the message sequence. Hence the name convolutional code is given. The sequence x,
1S given as,

: m ) |
A : i, | im0, 12 (4.126)
| I=0 |

—

Here m,_; = 0 for all />1 Similarly the sequence 1, is given as,

2 2 .
X, = x: ) - 'iog; )lq,_, i=0,1,2.... .. (412.7)

As shown in the Fig. 4121, the two sequences x, and x, are multiplexed by the switch.
Hence the output sequence is given as,

Vo FLN ) () () () () ()
S SO I R S SR . (4128)
o D L0 ()
Here v =X Xo XXy Xy }
e DD () (2 (2
and vy =X '{’o LETME UM SRR }

Observe that bits from above two sequences are mul

tiplexed i
sequence {x, } is the output of the convolutional encoder. In equation (412.8) The |

TEGHNICAL PUBLICATIONS " An up Wrust fr nowtedpe
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" —_Information Theory and Coding
i) Dimension of tp, co nal ency, .

der :
. de . fFig. 4199 g T
ifi) Constraint lengy, :';)) Code rae 42 determine g following ;
v) Output sequence Jor mess erating Sequen

Current v

message ‘

bit (m) \

Message | S I

Sequence Flip-f B 1™ - Output

o . u
P-tiop1 Flip-fiop 2 2 sequence
v%

Fig. 4.12.2 Convolutional encoder of example 4.12.1

Sol. : In the Fig. 4122

observe that input of Adder 1

flip-flop 1 is the current

message bit (m). The output | " or)('(1)

of flip-flop 1 is the previous M?ssstge m 1 m [ m, ¢ , S

message bit ie. m;. The P 0:2' or xi(z)

output of flipflop 2 is

previous to previous

message bit i.e. m,. Hence
I oder of Fig. 4.12.1 red

dbove diagram can l?e Fig. 4.12.3 Convolutlon: n::::.”& g rawn

tedrawn as shown In

Fig. 4.12.3.

Observe that the above encod

Adder 2

er is exactly similar to that of Fig. 4.12.1.

) Dimension of the code :

Observe that encoder takes ©
for every message bit. Hence 7

Dimension = (% k) =@ 1)

L . Hence k = 1. It generates two bits
bit at a tume.

9. Hence,

TECHNICAL PUBLICA
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if) Code rate :
Code rate is given as,
k

r=_=l
n 2

ili) Constraint length :

. . i hifts. Hence,
Here note that every message bit, affects output bits for three successive 5

Constraint length K= 3 bits

iv) Generating sequenées :
In Fig. 4.12.3 observe that x; ie. A s generated by adding all the three bits. Hence

i
generating sequence g(li) is given as,

gsl) ={111) . (1)
Here - gf)l) = 1 represents connection of bit m |

g(ll) = 1 represents connection of bit m;

g(zl) = 1 represents connection of bit m,
.xz ie. x§2) is generated by addition of first and last bits. Hence its generating sequence is
given as,

gfz) ={101) )
Here ggz) = 1 represents connection of bit m

2
g?

0 represents that m; is not connected

ggz) = 1 represents connection of bit m, -

The above sequences are also called impulse responses.

v) To obtain output sequence :
The given message sequence is,

m = (mygmyomy mym)=(10011)
To obtain output due to adder 1

Scanned with CamScanner



fhen from equation (4-12.6) we =%
C

an writ, o \\\l“f\oﬁaﬂm Theory and Coding

’

o . (3
with =0 above equatiop, becomes 3)

D
2 g Vm_

xgl) ( ) .
8o "My =1x1 =1, Here ggl) -1 and o =1

i=1in equation (3 = o(D
@), xf' 8o m & g{lm
= (1x0)® (1x1) = 1
Here note that additions are mod-2 type,

i=2 in equation (3), x{" = gD + $m + g

= (1x0) ® (1x0) ® (1x1)=1

1=3 in equation (3), x(l) = g(l)ma Gag(l)m2 @g(l)

o= (1x1) & (1x0) & (1x0)=1

(1)

i=4 in equation (3), x(l) = g(l)m eg(l)"'s ®g, m

= (1x1) ® (1x1) ® (1x0)=0

A (1) (1)
i=5 in equation (3), ¥ )'g Yms @ g, 'my ® gy M3

g( 1), , © g(l)mg since mg is not available
1

= (1x1)® (1><1) =0

0, @
(D @ gy M P8y
i=6 in equation (3), *¢ 3 s 81

()

ince mg and s are not available
s

=1x1=1

Thus the output of adder ; l’

Scanned with CamScanner
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To obtain output due to adder 2
Similarly from equation (4.12.7),

M
2 2
x =& = > 8 m_y
1=0

0 for all [ >1.

with i =0 in above equation we get,

x® = oD = (1x1)=1 Here g{? =1 and my =1

Withi=1, ¥ = ¢m @ ¢!Vm; = ax0)@ (0x1)= 0

Withi=2, x? = ¢Pm, & ¢ m @ ¢Pmy = (1x0) @ (0%0) & (1x1) =1

Withi=3, 1Y = ¢Pm, & gPm, @ gy my = (1x1) ® (0x0) & (1x0) =1

iea 2 2

Withi=4, x? = ¢m, & ¢Pm, @ ¢Pm, = (1x1) ® (0x1) @ (1x0) = 1
. - 2

With i=5, x(? = ¢Pm, & gPm, = 0x1) ® (1x1)=1

Withi=6 (2 = ¢@Dm =1x1=1

Thus the sequence x, is,

x; =xP=1011111)

.. (4
To obtain multiplexed sequence of X1 andx, as per equation (4.12.8)
The two sequences X1 and x, are multiplexed to get the final output j.e
.M. () (2 .
= PLDDD.0.0,0.0 0,0
6
= {1 ,10,11,11,01,01,1 1)
4.12.3 | Transform Domain Approach to Analysis of Convolutiona| g
h‘ - - n -
n St:: previous section we observed that the convolution of : coder
foge sequence takes place. These calculations can be simge];‘;rahng sequence and
trans rn.tatlons to the sequences. Let the impulse Plified by applying the
polynomials. i.e., reSponses  be Tepresented by
1 1
V() = 8" +5{"p+gDps.. 4gl m
.. (4.12.9)

TECHNICAL PUBLICATIONS™- A% up theust for ko
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(2)
7R = gDy
th 1 P+g§ )P2+ (2)
fhus the polynomialg o, . &y pM
) can be .
jelay operator in ap Written o - (4.12.10)
Ve e . ther
esponse. Quationg It 8enerat; —
Tesents > “*quences. The variable 'p' is unit

time delay of the bits in impulse

- (412.17)

convolution sums are converted to

- (412.12)

Bx. 4.12.2 :7 Repeat part (V) of exam ] ]
ple 4.12.1 using trans domain calculati 7
multiplications). o s o

%L : a) To obtain generating polynomial for adder-1 :
The first generating sequence is given by equation (1) of example 4.12.1 i.e,,

g? =11
Hence its polynomial can be obtained equation (4.12.9) as follows,

g(l)(p) = 1+1xp+1x p?
- (1)

= 1+p+ P’
mial for adder-2 :

yno
by equation (2) of

ce is given

Y To obtain generating pol example 4.12.1. ie,,
The second generating sequen

2) - 1
gg)_{lo}

. b
Hence jts polynomial can be ©
| 1x p?
¢@(p) = 1+0xpt
=1+ P2

NICAL PU I

renHi

tained equation (4.12.10) as follows,

- (2
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Communication Engineering

¢) To obtain message polynomial :

The message sequence is,
m=(10011)
Hence its polynomial can be obtained equation (4.12.11) as,

m(p) = 1+0x p+0x p? +1x p* +1x p*
= 1+p3 +pt -3

d) To determine the output due to adder-1 :
Now x(l)(p) can be obtained from equation (4.12.12) i.e.
» 6
xD(p) = gV (p)ym(p)= (14 p+ p2) (L4 p° +p4) = 14 p+p7 +7 P
The above polynomial can also be written as,
2D (p) = 1+(1x p)+(1x p? ) +(1x p3 )+ (0x p* )+ (0x p° )+ (1x p°)

Thus the output sequence xE. D s,

Y -(1111001)

@) To determine the output due to adder-2 :
Similarly polynomial x(z)(p) can be obtained as,

(@) = gD () mp) = 1+ P )+ P +pY) =14 2 + 2 4 p* 45 4

() .

Thus the output sequence x.*’ is,

£ =qo011111

f) To determine the multiplexed output sequence :
The multiplexed output sequence will be as follows,

{xi} = {1 1110111111101101,11}
Here note that very few calculations are involved in transform domain

4.12.4 | Code Tree, Trellis and State Diagram for a Convolution Encoder

encoder with the help of code e

trellis and state diagram. Consider again the convolutiona] encoder of Fig 4121 B is

reproduced below for convenience.

TECHNICAL PUBLICATIONS" - An up thrust for knowle l
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&

This bit represen| Itthentnmtiom {haeny mdh £ 1A,

aurrent mesaage hif
1 '3,',",,'.’,'.'".7 m‘q part Prssiensn Vs s momisn manmam,
( aginler / mﬂ L] Wﬂm’i ;‘rf:wm N:f: gy &z
Themer bomy tite (111, 11} 1ot vt

Message s oA oo rog
bits Input ’
.
L‘
- rhr

H_g. 4.12.4 Convolutions! encoder with k = 1 snd n = 2
4124.1| States of the Encoder

In Fig. 4.12.4 the previous two successive message bits my and m, represents sate The
input message bit m affects the ‘state’ of the encoder as well as outputs 7, and 15 during,
that state. Whenever new message bit is shifted to ‘n, the comtents o m, and m, oefme
new state, And outputs x; and x, are aloo changped according W rew state 1o, T a0
message bit m Let's define these states as shown in Table 412.1.

be zro. That s mom, =00 witially i

Let the initial values of bits stored in my and m,
the encoder is in state ‘a’.

et
0
0
1 e oy s
Table 4.12.1 States of the encodes of Fig. 4124

4.122.2| DovdopmﬂidﬂnCodﬂm
Letusconsiderthedevclopmeﬂtofwdeheelmlhemmtn-1m_.m

1) When m=1ie. first bit

Theﬁrstmessageiﬂf’““’m'l' ;
L £, 1®0=1 - This 't & dcanser
Before shift é Adher sl H
| A

y
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i ntents are shift
The values of x;x, = 11 are transmitted to the output and register 0 ed to

right by one bit position as shown.

itted are x1x, =11 Th;
Thus the new state of encoder is m, m; =01 or V' and output tfansnt:e et stalt e2 is ‘¥ This
shows that if encoder is in state ‘a’ and if input is m = 1 th.en S aiton and
outputs are x,x, =11 The first row of Table 4.12.2 illustrates this ope :

The last column of this table shows the code tree diagram. The code tree diagram starts at

node or state ‘7. The diagram is reproduced as shown in Fig. 4.12.5.

Upward arrow indicates
& that message bitis m =0

Start /— Node or state

Downward arrow indicates
that message bitis m =1
This indicates output
while going from node b-e— This is new state
'a'to b’ ~——»11 or node when m = 1

Fig. 4.12.5 Code tree from node ‘a’ to ‘b’

Observe that if m= 1 we go downward from node ‘¢. Otherwise if m = 0, we go upward
from node ‘7. It can be verified that if m= 0 then next node (state) is ‘a’ only. Since m=1
here we go downwards toward node b and output is 11 in this node (or state).

2) When m=1 i.e. second bit

Now let the second message bit be 1. The contents of shift register with this input will be

as shown below.
x;=10180=0 11110

m m; m,
12"1$0=1 -

These values of x;x, =01 are then transmitted to output and
register contents are shifted to right by one bit. The next state NS}N fm:?
formed is as shown. :

L SR 0
‘ m m, m, ‘—l
Thusﬂaemw-stateofﬂleencoderls_mzmlﬂlor‘n‘ and the e

outputs transmitted are x;x, =01 Thus the encoder goes from Thisbtis dlscardfu
state b’ to state ‘d if input is ‘1’ and transmitted output
x,x, =0L This operation is illustrated by Table 4.12.2 in second

£ In row. f

the table shows the code tree for those first and second input bits, Pt i ot polin ©
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Ahades . 2 s

fedesroatun Trarwy v ef:.eu.‘
§-J0A

3 Whenm =0, e 37 bt

‘ evicnss PIRE) ilustrates e
Ssmilarty 3¢ row of the Table 4122 (Reder table ’;mw;:' serve in the code tres of

operation ofenmderfarB" mputmemgtbnagm ‘ g |
wms"“wbﬂnm-ﬂ,d&pﬂhdhumn#vmnwmﬂ w1

, 5., =01
towands node (or state) ‘¢ That is the next state 13 'C (1€ 10) and output 18 1,77 sl

wmmmmm ’

_ . starts at node 'd I wput
ﬁgillbdwsﬂncodemfmﬁmmmder The cxde tree o i
mbﬂb'l'ﬂmwd&tmyndrmuma!dnrﬂdelf wf;mn _
Mﬁdtenwum-ﬂamde’l,mwﬂ)dﬂnmg{mmd teror seds
m'lwwﬂmﬁnﬁlﬂ&,dspadmgupwﬂtmpmmmﬂtpahdh
m@“uwardordmnmard.ﬂmm:dcsﬂzmztk&dwrﬂimma,b,cmd,(m
the path between two nodes the outputs are shown. We have verified the part of this code
tree for first three message bits 20 110

¥ vou carefully observe the code tree of Fig 4126, you will find that the branch pattem
begins 10 repeat after third bit. The repetition starts afer 3°° bit, sirce particular message
bit 1 stored i the shift registers of the encader for three shifts If the length of the shift
megister is increased by one bit. then the pattern of code tree will repest after fourt
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41243 | Code Trefj, (Repr, ]

(ode trellis ;o the Y Stagy TM,‘NWMM\\\ |
representation of ) | .

tsgﬂ:POn input cod State
represe; smg]e'anumque = Trellis
such ‘anslhons, Fig 4127 8Tam fo,
grellis diagram code
The nodes on the
qurent  stateg ‘eft denote four Possible
. and  those on g - Fig. 4.12.7 Code trefis
ri
represen n.ext state. The solid B ght
represents input m=1 ) m’“"“‘m@%mm

41244 | State Diagram

lfw?mmbineﬁ\ecunentandnextm,dmwe
obtain state diagram.

for example, consider that the encoder is in state
7. If input m = 0, then next state is same ie. a (ie.
) with outputs x;x, =00. This is shown by self
bop at node ‘a’ in the state diagram. If input m= 1,

: Ay 4.12.8 State diagram for
then state diagram shows that next state is ¥ with oo::aunumaﬁg.uu

autputs x,x, =11

and trellis diagram :
Canpubonwncodﬂl“ -
; and trellis diagram as a graphic
d\ecompansmbetwemoodetme
Table 4.12.3 shows jecode convolutional code.

......

Scanned with CamScanner



Communication Engineering 4-

Code tree repeats after number of stages
used in the encoder.

Code tree is complex to implement in
programming.

H ram
Table 4.12.3 Comparison between code tree and trellis diag

4.12.5 | Decoding Methods of Convolutional Codes

These methods are used for decoding of convolutional codes. They are viterbi algorithm,

sequential decoding and feedback decoding. Let's consider them in details in subsequent
sections.

4.12.5.1 | Viterbi Algorithm for Decoding of Convolutional Codes (Maximum Likelihood Decoding)

Let’s represent the received signal by Y. Convolutional encoding operates continuously on
input data. Hence there are no code vectors and blocks as such. Let's assume that the

transmission error probability of symbols 1’s and 0’s is same. Let's define an integer
variable metric as follows.

Metric :

It is the discrepancy between the received signal Y and the decoded signal at particular
node. This metric can be added over few nodes for a particular path.
Survlvin§ Path :

This is the path of the decoded signal with minimum metric.

In viterbi decoding a metric is. assigned to each surviving path. (Metric of a particular path
is obtained by adding individual metric on the nodes along that path). Y is decoded as the
surviving path with smallest metric.

Consider the following example of viterbi decoding. Let the signal being received is
encoded by the encoder of Fig. 4.12.1. For s 8 v

this encoder we have obtain, trellis in
Fig. 4.12.7. Let the first six received bits be ed code

Y =11 01 11
a) Decoding of first message bit for Y = 11

Note that for single bit input
the encoder transmits two bits
(x1x;) outputs. These outputs

Branch for m =g
Y =17 Wim_owoo Cumutative or

path discrepancy
are received at the decoder and —@a (etic) & two
represented by Y. Thus Y given Branch for m <1
above represents the outputs  with output 11 Path metric is ze©
for three successive message Discrepancy or metric vl
bits. Assume that the decoder is is zero b1

Fig. 4.12.9 Viterbj decoder results for
- —— 118 for first message bRt _
TECHNICAL PUBLICATIONS™ - An-up thrust for knowlacine
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st e = state i:?: Code trely; i ~— Mformation Theory and Coding

ﬁ -
) e o : ﬁmwmbe,?g’%u7f°fﬂ'ﬁsamder.ltdws
sz;miﬁmmoﬁmbmq ka““o'*bmthisa o7 Y. This is shown in Fig, 4.12.9.
‘% ath . m@ﬁfepremﬁngd&bdﬂ
l7]"(":""“0"Slgﬂalas]],

2
<
exampie. the path metnc of pafh 4,,48,,8, s ‘\%‘z
res’ The pafh metnic of path a,b,4, is zero. Fig. 4.12.10 Viterbi decoder results for

o D:.:zﬂmgq"?'i messapr b for ¥ =11
Fag £71271 shows the oelis diagram for 2ll the sx bats of Y.

mllmwnﬁswﬁﬁzﬂﬁ v= 1 o1 1

__bﬁd},mmﬁﬂnmm AL SN ¢ ‘°
s ‘ o with metnic 3. A L T L N
narde € Om?“ﬁ;‘?zz%m metic 2. 0@ @ s
Tre “ ?‘ , nogGes 2y g 2
mewpaﬂnﬁf’&” AN , @
- - o o viterDi decoding, only ODE NN 7Y
Ay  ACTorSINE i be setmmed & : p =
path wis dower ;"“_ = Fig 41211 e ﬂfx“ 1 o
‘; L i x OO 2 cancelie H‘?‘dz
safe mili!ﬂ fnan ofber G 1

11 Paths and their metsics for
ﬂ"ﬂ' vierbi decodang

e
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j iterbi ' bits
d) Eurther explanation of viterbi decoding for 12 message
S e 12 bits. Observe that in

Fig. 4.12.12 shows the continuation of Fig. 4.12.11 for 2 messag o of output ie. Y4E
this figure, received bits Y are marked at the top of the decoded V:
is marked at the bottom and decoded message signal is also marked.

00
442
- Maxirr;um
likelihood
path 1]
|
S
;
Y+E=11 00
0

M=1

Fig. 4.12.12 Viterbi decoding

Only one path of particular node is kept which is having lower metric. In case if there are
two paths having same metric, then any one of them is continued. Observe that a node
‘a;,’ only one path arrives with metric two. This path is shown by a thick line. Since this
path is lowest metric it is the surviving path and hence Y is decoded from this path. All
the decoded values of output are taken from the outputs of this path. Whenever this path
is broken it shows message bit m=1 and if it is continuous, message bit m=0 between two
nodes.

This is the complete explanation of viterbi decoding. The method of decoding used in
viterbi decoding is called maximum likelihood decoding.

e) Surviving paths

During decoding you will find that a viterbi decoder has to store four ‘surviving paths for
four nodes.

ivi = 2(K-1k -
Surviving paths = 2 .. (4.12.13)
Here K is constraint length and k is number of message bits.

For the encoder for Fig. 4.12.1 K=3 and k=1

Surviving paths = 2(3-1x1 _4

Thus the viterbi decoder has to store four survivin
‘ g paths always. If h of
message bits to be decoded are very large, then storage requirement is alsq l:rgzmr o

TECHNICAL PUBLICATIONS™ - An up thrust for knowledge
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retric diversion efg iI:l:;]hp]e 0 presen o _nformation Theory and Coding
°Ctis useq, AMple foyr)
Paths. To avoid this problem

For the two syry;
likely path tends
5 (k—1) brancheg from the co

consider the two
Paths com;
other path comes a¢ 4_ ming

ving Paths oo
. Tiginati

o increase my, t::gidffom the same node, the running metric of less

on n OdIe)_ Tl)',us than the metric of other path within about

8 called metric divergence effect. For example,

ﬁ'Om n P 2
'ode b, in Fig. 41210, One path comes at a5 and

ints about sequential decoding.

1) The fiecoding starts at a;. It follows the single path by taking the branch with smallest
metric. For example as shown in Fig. 412.13 (a), the path for first three nodes is
agb,d, since its metric is the lowest.

j=0

1

2
4

(a)

Running metric

C;

Fig. 4.12.13 Sequential decotind

A ",:.: s st . - lﬁlm-' Anwp o
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2) H&aemmoammﬁm&z.mmdtmﬁ’

3) ﬁomijdJovewemMﬁMmerwobrMﬁﬁ"m ‘pe&nisﬁrxmd i
mm&mmmswarwm.ﬁﬂww e it g b
Waﬁ@mmmmﬂammr : s o o
mﬂ]amdehﬂmmgdeeﬁm"mﬂ?a:::#“ (Zmple ooweTre
m the b LllB(ayﬂJattwomwiﬁimm £ .
Pﬂstdsfs%‘mpdhmabd’B’,mm'?x@.Wdew

£ Thededémabandmppmgapathsbasedmﬂaeape@dva&:tofmag.m
at 2 given node. Running metric at 2 particular | node s gven 5

Running meflric = jn G
Where j is the node at which metric is to be calculated

.. (21214

% is fhe mumber of encoded cutput bits for one message b
and @ is the fransmission error probabibty per bit

The seguential decoder abandons 2 path whenever s runming mefric exceeds (jza@+ AL

Here A is the should be above jra at | * node Fig 41213 (b) shows the rumming metric

at a particular node with respect to number of that node The two dotted nes shows the

range of threshold 'A above ma at 2 particular node Observe that since metric of path B

exceeds the threshold at 5 node, it is abandoned and decoder starss from node 7 agzin.

Similarly path " A is also abandoned

5) ¥ the running mefric of every path goes out of threshold Emits then the valme of
tweshold ‘A s inceased and decoder tres backa@hﬁgiungb;e&e
vzhneofazl“lﬁ,ﬁxmderofﬁg-;_lllwvehmtia;;:z[d'sm we &
8% node. "

At 8% node ma=8x2x1/16=1 The vale of A=2 Therefore threshold will be,

Threshold = ma+A=1+2=3 at 8% node Similarly the
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W ] Idormanon Theory and Coding
1 b‘l:;{:emm‘)dnd;g delay iS smaj] n con "
vohutiona]
ta. Codes since they operate on smaller

required b}, convolution] e o o _

2) Convolut; are 1ot dev M'ZESH\CE&&IM}'&SLSMPEL
dOPEdediasoompamdmblod:codes

/3 - — - - =
Wummhxmgmfmsglzaoo) g, =(1171) and

ﬁ)meﬂwmdem,smtedmgrmmmusdhgrm
m)lfirtputmessagesequmczisIOIIO,Mmmﬂuoutputseqmaqfﬂxmcoda.
Sol. : To determine dimension of the code :

This is rate 1/3 code. We know that

rate=;=%, therefore k=1and n=3.

i) To sketch encoder configuration :

Here k =1 and n=3. This means each message bit generates three output bits. There will be

ﬂxreestagestﬁftregister.ltwillcontainmm]andmz-

First output x, will be generated due to —q‘“[“l-!,
g =(100)

Since g, =(100), x;, =m

Second output x, will be generated due

to g, =(111)
Since g, =(111), X, =m® m &m) e & oy
Third output x3 will be generated due to _ Ouput
Sequence
g, =(101) Fig. 4.12.14 Encoder
Since g, =(101), *3 =m® ™M |+ oed on above discussi

p er
Fig. 412.14 shows the diagram of encod

- o
" — m-np“"
JECHNICAL PUBLICA

Scanned with CamScanner



o

o

T T I TeE T T

R

o

,“‘i

R SR NS S S T ke o

Information Theory and Codin,
Communication Engineering 4-112 e )
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e —
e A

i) To draw code tree, state diagram and trellis diagram :
a) To obtain trellis diagram

encoder. Let
The two bits m, m; in the shift register will indicate the state of the these
states be defined as follows :

mm =00 state ‘a’
mym =01 state b’
mym =10 state ¢’

mm =11 state ‘d’

a=00

Table 4.
How next stage is written ?

Consider the following diagram.
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As shown in Flg 4.12.15, current stay T———_______Information Theory and Coding
e is - V

pecomes ny m Table 4. m. )
12.4 shows current " ™. When the bits are shifted, then next state

. . . and ne ;
A trellis diagram is shown in Fig 415, based X! states according to this concept.
: on Table 4.12.4,

Dotted line indicates input m = 1
Solid line indicates input m =0
Fig. 4.12.16 Trellis diagram for encoder of Fig. 4.12.14

b) To obtain state diagram

If we combine the modes in trellis diagram, then we will get state diagram. It is shown

below.

m of encoder of Fig. 4.12.14

Fig. 4.12.17 State diagr

¢) To obtain code tree
Code tree can be developed

perfOI'mEd : rmally 4)-
N ode (normally
1. Begin With 3 "~ gand1

) tes for
2. Draw its next S T 1 iates for

ate determin€é

3. For every st repeating.
4 Repeat step 3 till code tre€ starts repeé ; e
i TECHNICAL puBLICATIONS ™~ A7 % .

v 1

with the help of state diagram. Following procedure should be
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et

Assumption : Upward movement in code tree indicates m=0.

Downward movement indicates m=1

Based on above procedure, the code tree is developed as shown in Fig. 4.12.18.
000,
000
a
- 1,
—1° 010 .
b
101
| 000 11 d
a 011 .,
010
Cc
T 001 .
(o]
01 10480,
—%a
000
o1 [ a
111
010 b
m=1y ¢ 010
(]
100 1101 4
S
m oM
001 a
100 b
—s—4¢d
01 001
d
110
10 _,

iii) To obtain output sequence for m = 10110 .
a) To determine generator polynomials
The generator polynomial can be written for ()

i as,
é“-@oq

g™ (P) = 1+0p+0 p2

TECHNICAL W"W
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d generatin .
And g€ & Polynomia] fo, x§3) will be

g = (101

8(3)(P) = 140 p+p2
= gNpP=1+¢"

») To determine the message polynomig]

The message sequence is given as,

m=10110

m(p)

<) To obtain output sequence for ggl)
o)

The sequence x
D = g0 (@) m(p) =101+ +7%) =14 57 + P

is given as,

Hence the corresponding sequence is,
D = {1011}

2
i) To obtain output sequence for gg )

The sequence xfz) can be obtained as,

1@ =5 (p) m(p)

= (l+p+p2)(l+p2+p3)=1+p2+p3+p+p3+pl+p2+P4+p5

S
_ 14+ p+0p2 0P +0P+P

Hence the corresponding sequence 15,

x§2) - {11000}

©)
e) To obtain output sequence for &;
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D = g () m(p) = (1+72) (1477 +7°)
=1+p2+pP 42 +pt g = 1402 + P gt
Hence the corresponding output sequence is,
) - foo111

§ To multiplex three output sequences
The three sequences x”, 1 and @ are made in equal length, ie. 6 bits. Hence zeros
i 77 i

1 -

are appended to x,(]) . These sequences are as follows :
D = {101100}

2 - fi10001)
£ - {100111)
Bits from the above three sequences are multiplexed to give the output sequence. ie.,

x; = {111 010 100 101 001 011}
This is an output sequence of the encoder.

Example with Solution

Ex 4.12.4 : For the convolutional encoder with constraint length of 3 and rate 1/2 as shown in

Fig. 4.12.19, draw the state diagram and trellis diagram. Is the generated code systematic 7 By
using viterbi algorithm, decode sequence 0100010000 ...

J\ Path 1
- %!;Iod-Z
adder
lmu——#—— FF1 | FF2 °
Flip-flop Flip-flop Output
mod-2
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i) To obtain State diagram and trellis i Information Theory and Coding

et U5 Tedraw the diagran . S diagram .
encoder as shown. The State of :

the encoder is Tepresented

mm. Input is ‘p’ Carefuu;’
observe that, Fig. 4.1219 i similar 'NPut-T%
to convolutional encoder of
Fig. 412.4. In Fig. 4.12.19 two flip
flops hold previous two inputs X
ie. m . i ip- i i

(ile. mym,) Tl."ll'd flip flop is not Fig. 4.12.20 Convolutional encoder of Fig. 4.12.19
shown, but input 'm' is ygeq

dlrect?.y. In Fig. 4.12.4, there are three stages in shift register which contain m m; and m,.

_Functionally both the encoders are same.

o—1

De—

Hence code trellis and state diagram of this encoder will be similar to those given in
Fig. 4.12.7 and Fig. 4.12.8. They are given below : ’

00
>

-~
-
-
-~
-
-
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iii) Whether the generated code is systematic ? +ock bits must be identifieg
. : chec .
For the output code to be systematic, the message bit and Hence generated code js

- oder.
But this is not possible in the output sequence of given enc

not systematic.

iv) To decode 0100010000 ...... hat only SUrViver paths
A trellis diagram is shown in Fig. 4.12.22. In this figure observe The path giving lowe
are shown dark. Running metrics are marked near every node. I; forr Dafhs T
metric is retained at particular node. Thus at the nodes a,-,b,-,c,-,di on Yd fourpsurv‘are
retained. These paths are evaluated at every stage of decoding. At the end, vor

paths are written along with their metrics.

——rf—f‘rT'—r l )
Received _[o1] . | . |00 T o1 .| 00 . | : Selected" '
L sequence ' . '“‘60‘“ i : - [ patq T
a, w0 s |a,—a,-a3—a4— a5~ ENe))
____________ LN -
| o1
\;\ -
1My | L] |
: 1aq—a— a— b4— Cg— bﬂ@
I [ 1= b= d3= €= bs—¢4(3)
| |
, L .
Y+E 1 Cl |
— Decoded— 00 | |
sequence ‘ T
........ " | ] | { | | i M
- o
Fig. 4.12.22 Viterbi decoding
They are :

Path 1: 4, -a, -a; -a, -ag -a, with metric 2

Path 2 : 4y -ay -a3 -b; -c5 -bg  with metric 3
Path3:ﬂ1'b2'd3‘C4-b5‘C6 Wlthmetrlc3
Path 4 : a; -b, -d3 -cy -b5 -dg  with metric 3

Out of these four paths, first path has lowest metric.
decoding the output sequence.

For path '1' the output is,
Output : 00 00 00 00 00 00

e —— 4_/

TECHNICAL PUBLICATIONS™- ap ,,
P thrust for knowiledge
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Comparisy, be

. en Lin e
Till now we Studieq ar Blogy e
. od
basis of their ence MWolutiong) os

\\-‘JEQ"E_UEH Theory and Coding

nd Convoly
) in € anq 1 onal Codes
complexity etc Points, Taﬁle TEthOds, & 0ck codes,

0
125 lists the ¢ ol:;g l_nethods

€Yy can be compared on the
error correcting capabilities,

i e : :
A ; \_\ Convolutioml codes 3 "J
A enerateq by e |
! ’ . 4
=MG or cCoonV(;luhonal codes are generated by
i X(p) = nvolution between message uence and
B (P) M(p) G(P) . generating sequence, j.e. A s
: = g sim_y,i=0,1,2, ... o
ER —— 1=0 .
T —
:)':_""' “:‘ > For a bloCk Of message bits encod d bl [ — .-N----.‘“——_‘_——.-:J.
. (code vector) is generated. ed block  Each message bit is encoded separately. For
e - . , évery message bit, two or more encoded
i ) bits are generated.
r" ' Coding is block by block. Coding is bit by bit.
Syndrome decoding is used for most Viterbi decoding is used for most likelihood:
likelihood decoding, decoding. %
Generatof matrices, parity check matrices Code tree, code trellis and state diagrams
~ and syndrome vectors are used for analysis. are used for analysis. |
. ies of the code can be  Distance properties of the code canbe . |
Is)t:f:lal‘gge frl;rr?lp:;gzsv(:_-cto:s. studied from transfer function. MgTE

Vi) i! y f
( i i are used to get code
i i d generator mafrix Generatmg sequences ‘
Generahng polynormal an ' "

ectors.
are used to get code vectors. vect

. ili i i detection capabﬂiiy
. n capability Error correction and ( : £
Bior comscion nd e oty B rr, ey cpbtly 8

Table 4 om : des and convolutional codes
C ison of linear block co
le 4.12.5 par

—

Examples for Practice

3. binary convolutional encoder is shown in Fig. 4.12.23.
K =5

: Avrate Yy o di and the state diagram for above encoder.
Ex. 4.12.5: . oram, trellis diagram
the tree diagram,

a) Draw ed signal at the decoder for eight message bits is,

U
b) If the rece 0 01) L
y =(00 01 10 00 00 00 1 code tree diagram' and find out message bit

non 4 trellis or

Trace the decisio

sequence: ' |

L]

——

/—’:‘”..17,, for knowledge
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